FPGAs in radiation-harsh environments

Application examples

AFDX

- Used on new commercial aircrafts from Boeing and Airbus
- Main communication interface
- Safety level up to DAL-A

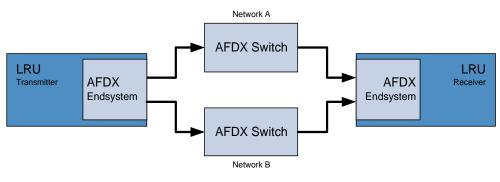
Mission computers

- Used on all aircrafts
- e.g. freight control system for Airbus A400M
- Safety level up to DAL-A

The old Style: ARINC-429

ARINC-429 commonly found in aircrafts of the 80s

- Mono directional bus \rightarrow 1 transmitter, n \leq 20 receivers
- Dedicated wiring for each connection
- 100s km cabling per aircraft
- Transmission rates: 100kbit/s and 14.5kbit/s (low critical)


Nowadays: AFDX Technology

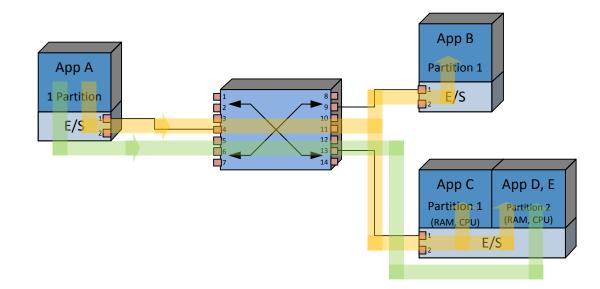
Based on IEEE802.3 Ethernet

- 100Mbit/s Ethernet
- Full duplex
- Switched
- Full static configuration, no ARP, no DNS, ...

Provides Reliable Data Transport

- Known latency
- High availability through redundancy

Redundant Network Architecture

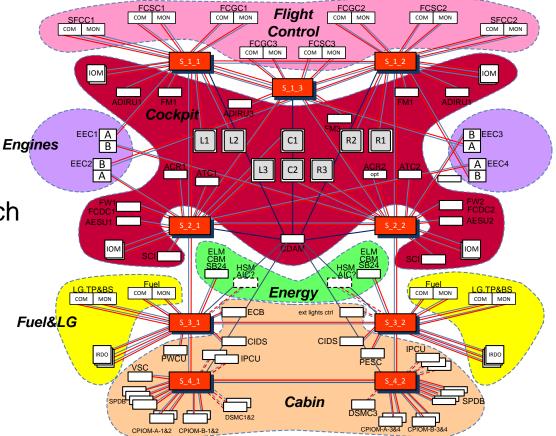


Embedded Solutions

AFDX – Virtual Links replace ARINC-429

Avionics communications are based on multicast

- One transmitter
- One or several receivers


⇒ Virtual links provide similar properties as ARINC-429

Airbus A380: AFDX Network

A380 AFDX network

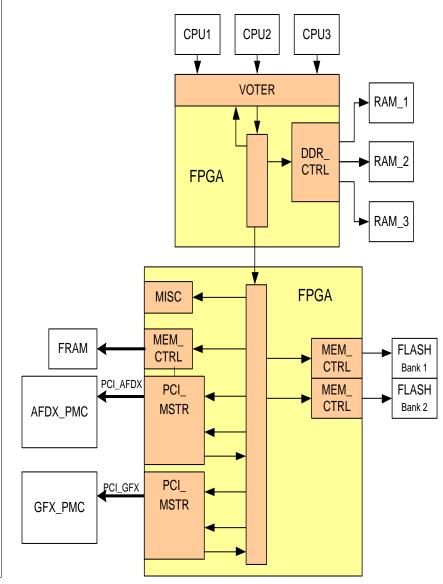
- 100Mbit/s Ethernet
- Redundant networks (A&B)
- AFDX switches (2 x 9)
- #of ports on each switch (20 – 24)
- Up to 80 AFDX endsystems

AFDX – Ethernet for Mission-Critical Applications

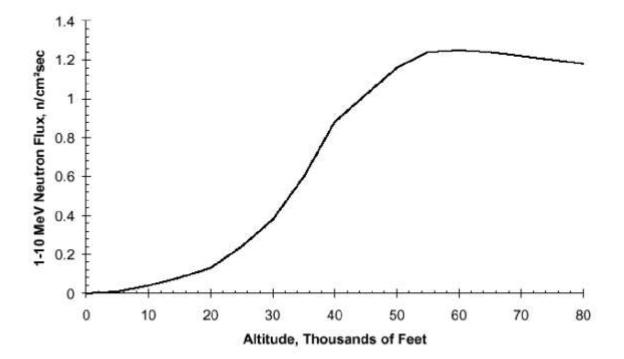
AFDX interface

- Certifiable FPGA implementation
- Available on PMC P520
- Full-featured AFDX protocol engine
- Interoperable with Airbus and Boeing

Airbus A400M Freight System



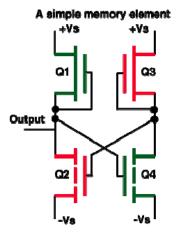
Mission Computer with FPGA Architecture

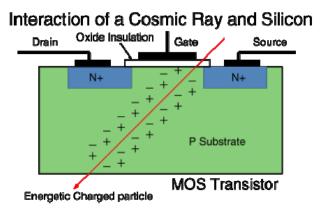

Embedded Solutions

- Triple redundancy on board
- 3x redundant PowerPC 750 CPU with up to 800 MHz (Lockstep)
- Redundant memory
- Onboard data transfers paths realized with FPGAs
- Voting done inside FPGA
- Compliant with DO-254 up to DAL-A

Challenge: Single Event Upsets/Multi Bit Upsets

- Aircrafts are exposed to radiation environment
- Neutrons (Secondary Cosmic Ray Particles) may cause SEUs and MBUs in electronics equipment
- Particle flux varies with altitude max. flux at 60.000 ft.

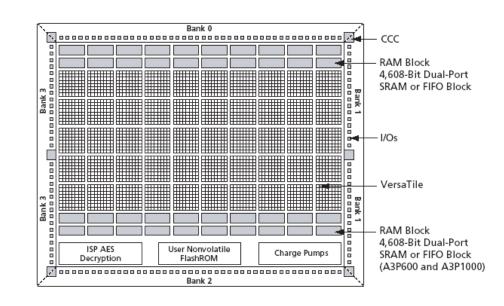




SEU/MBU Effects

Components susceptible to SEU/MBU bit flips

- SRAMs
- SDRAMs
- Microprocessors
 - Register Caches Internal buffers/FIFOs
- FPGAs
 - Cell configuration Logic cell state


FPGA Issues

FPGA configuration must be SEU hardened

- FPGAs with RAM based configuration need mitigation strategy
- FPGAs with FLASH based configuration are SEU/MBU immune

But

- Registers and RAM within FPGAs still not SEU immune!
- Other mitigation techniques required

SEU/MBU RAM Sensitivity

Failure probability 10-7 / flight-hour (DAL B)

Only one safety relevant failure in 10 Mio. flight hours!

Error probability increases with number of bits

Examples

512MByte SDRAM at 60.000 ft. (no ECC)

 \rightarrow Fails after 10 hours!

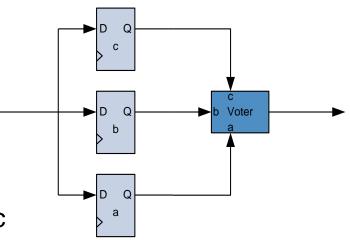
32kByte cache

→ Fails after 3.5 month

⇒ Safe airplanes would not be possible

Architectural Solutions

Register and logic protection strategies

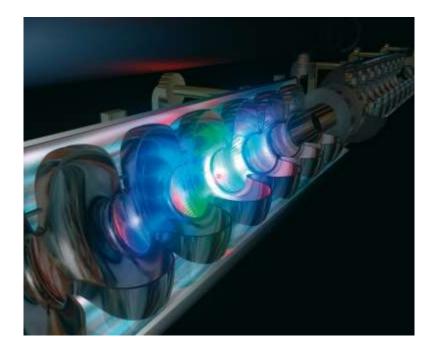

- All FPGA registers subject to SEUs
- Critical sections use 2003 voting logic
- Majority voter overrules faulty register value

Triple modular redundancy (TMR) is expensive

- Requires more than 3 times regular logic
- Slows down timing up to 20%

TMR significantly lowers the probability of SEU induced failures in the FPGA logic

⇒ Safe airplanes are possible



utions

Verification of TMR Technology

Architectural mitigation strategy can be verified by proton beam experiments

- DUT is exposed to particle beam with density equivalent to high altitude radiation
- DUT is running in test to demonstrate operability

Thank you for your attention!

Embedded Solutions

Rugged Computer Boards and Systems for Harsh, Mobile and Mission-Critical Environments

As a member of the UN Global Compact Initiative, MEN is committed to follow the principles of human rights, labour, environment and anticorruption as defined by this organization.

